A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees

Shuyao Li ${ }^{1}$

Joint work with Stephen Wright ${ }^{1}$

SIAM Conference on Optimization
June 1, 2023

[^0]
Problem Setup

Find an approximate second-order stationary point (SOSP) x^{*} of

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

- $\left(\epsilon_{g}, \epsilon_{H}\right)$-approximate SOSP (we assume no ϵ_{g} and ϵ_{H} coupling): $\left\|\nabla f\left(x^{*}\right)\right\| \leq \epsilon_{g}, \quad \lambda_{\text {min }}\left(\nabla^{2} f\left(x^{*}\right)\right) \geq-\epsilon_{H}$.
- f has L-Lipschitz gradient and M-Lipschitz Hessian
- f is bounded below by $\bar{f}>-\infty$.
- Inexact evaluations at iterate x_{k} :
- Inexact gradient g_{k} such that $\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \frac{1}{3} \max \left\{\epsilon_{g},\left\|g_{k}\right\|\right\}$
- Inexact Hessian \mathbf{H}_{k} such that $\left\|\mathbf{H}_{k}-\nabla^{2} f\left(x_{k}\right)\right\|_{\text {op }} \leq \frac{2}{9} \epsilon_{H}$
- Only need Hessian for a fraction of iterations
- No function evaluation $f\left(x_{k}\right)$ is needed
- More general than mini-batching in stochastic optimization

Basic algorithm with exact evaluations

```
Algorithm 1: Wright and Recht 2022[Section 3.6]
if \(\left\|\nabla f\left(x_{k}\right)\right\|>\epsilon_{g}\) then
    // gradient step
    \(x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)\)
else if \(\lambda_{k}:=\lambda_{\min }\left(\nabla^{2} f\left(x_{k}\right)\right)<-\epsilon_{H}\) then
    // negative curvature step
    \(p_{k} \leftarrow\) unit minimum eigenvector of \(\nabla^{2} f\left(x_{k}\right)\) with \(\nabla f\left(x_{k}\right)^{\top} p_{k} \leq 0\)
    \(x_{k+1}=x_{k}+\frac{2 \epsilon_{H}}{M} p_{k}\)
else
    return \(x_{k}\)
```


Basic algorithm with exact evaluations: complexity

- Gradient descent analysis is standard

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{\epsilon_{g}^{2}}{2 L}
$$

- Negative curvature step:

$$
\begin{aligned}
& f\left(x_{k+1}\right)=f\left(x_{k}+\frac{2 \epsilon_{H}}{M} p_{k}\right) \\
& \leq f\left(x_{k}\right)+2 \frac{\epsilon_{H}}{M} \underbrace{\nabla f\left(x_{k}\right)^{\top} p_{k}}_{\leq 0}+\frac{1}{2} \cdot \frac{4 \epsilon_{H}^{2}}{M^{2}} \underbrace{p_{k}^{\top} \nabla^{2} f\left(x_{k}\right) p_{k}}_{<-\epsilon_{H}}+\frac{M}{6} \cdot \frac{8 \epsilon_{H}^{3}}{M^{3}} \\
& \leq f\left(x_{k}\right)-\frac{2 \epsilon_{H}^{3}}{3 M^{2}}
\end{aligned}
$$

- Complexity guarantee: Algorithm 1 terminates at an $\left(\epsilon_{g}, \epsilon_{H}\right)$ approximate SOSP in at most

$$
\frac{f\left(x_{0}\right)-\bar{f}}{\min \left(\frac{\epsilon_{g}^{2}}{2 L}, \frac{2 \epsilon_{H}^{3}}{3 M^{2}}\right)} \text { iterations. }
$$

Algorithm with inexact evaluations

Inexact gradient g_{k} such that $\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \frac{1}{3} \max \left\{\epsilon_{g},\left\|g_{k}\right\|\right\}$
Inexact Hessian \mathbf{H}_{k} such that $\left\|\mathbf{H}_{k}-\nabla^{2} f\left(x_{k}\right)\right\| \leq \frac{2}{9} \epsilon_{H}$

```
Algorithm 2: Our algorithm
if \(\left\|g_{k}\right\|>\epsilon_{g}\) then
    // gradient step
    \(x_{k+1}=x_{k}-\frac{1}{L} g_{k}\)
else if \(\hat{\lambda}_{k}:=\lambda_{\text {min }}\left(\mathbf{H}_{k}\right)<-\epsilon_{H}\) then
    // negative curvature step
    \(\hat{p}_{k} \leftarrow\) unit minimum eigenvector of \(\mathbf{H}_{k}\)
    Draw \(\sigma_{k} \leftarrow \pm 1\) with probability \(\frac{1}{2}\)
    \(x_{k+1}=x_{k}+\frac{2 \epsilon_{H}}{M} \sigma_{k} \hat{p}_{k}\)
else
    \(L\) return \(x_{k}\)
```


Complexity Guarantee

Theorem

- If Algorithm 2 terminates and returns x_{n}, then x_{n} is an $\left(\frac{4}{3} \epsilon_{g}, \frac{4}{3} \epsilon_{H}\right)$-approximate SOSP.
- Expected: Let N denote the iteration at which Algorithm 2 terminates. Then $N<\infty$ with probability one and

$$
\mathbb{E} N \leq \frac{f\left(x_{0}\right)-\bar{f}}{C_{\epsilon}}, \quad C_{\epsilon}:=\min \left(\frac{\epsilon_{g}^{2}}{6 L}, \frac{2 \epsilon_{H}^{3}}{9 M^{2}}\right)
$$

Same complexity as the deterministic algorithm with exact evaluations.

- High-Probability: Algorithm 2 terminates after n iterations with probability $1-\delta$, for

$$
n=O\left(\frac{f\left(x_{0}\right)-\bar{f}}{C_{\epsilon}}+\frac{1}{\tau^{2}}\left(\frac{M L \epsilon_{g}}{\epsilon_{H}^{3}}\right)^{1+\tau} \log \left(\frac{1}{\delta}\right)\right)
$$

where we can choose τ to be a small constant at the expense of a large constant factor

Interpreting the high-probability complexity guarantee

$$
\begin{aligned}
n & =\tilde{O}(\overbrace{\frac{f\left(x_{0}\right)-\bar{f}}{C_{\epsilon}}}^{\text {Expected }}+\overbrace{\frac{1}{\tau^{2}}\left(\frac{M L \epsilon_{g}}{\epsilon_{H}^{3}}\right)^{1+\tau}}^{\text {High probability correction }}) \\
C_{\epsilon} & =\min \left(\frac{\epsilon_{g}^{2}}{6 L}, \frac{2 \epsilon_{H}^{3}}{9 M^{2}}\right)
\end{aligned}
$$

Corollary
$\epsilon_{H}=\sqrt{\epsilon_{g} M} \quad$ Choosing $\tau=1$ gives $n=\tilde{O}\left(\frac{1}{\epsilon_{g}^{2}}\right)$.
ϵ_{g} and ϵ_{H} satisfy $\frac{\epsilon_{g}^{2}}{6 L}=\frac{2 \epsilon_{H}^{3}}{9 M^{2}} \quad$ Choosing $\tau=1$ gives $n=\tilde{O}\left(\frac{1}{\epsilon_{g}^{2}}\right)$.

No coupling between ϵ_{g} and ϵ_{H} required

Previous work (Yao et al. 2022) considered the same general inexact settings, but

- Can only handle $\epsilon_{H}=O\left(\sqrt{\epsilon_{g}}\right)$ - "strong coupling"
- Analyze the cubic to choose a stepsize

$$
\begin{aligned}
f\left(x_{k+1}\right) & =f\left(x_{k}+\frac{2 \alpha_{k}}{M} \hat{p}_{k}\right) \\
& \leq f\left(x_{k}\right)+2 \frac{\alpha_{k}}{M} \nabla f\left(x_{k}\right)^{\top} \hat{p}_{k}+\frac{1}{2} \cdot \frac{4 \alpha_{k}^{2}}{M^{2}} \hat{p}_{k}^{\top} \nabla^{2} f\left(x_{k}\right) \hat{p}_{k}+\frac{M}{6} \cdot \frac{8 \alpha_{k}^{3}}{M^{3}}
\end{aligned}
$$

- Lead to worse (stricter) gradient inexactness tolerance

No $\epsilon_{g}, \epsilon_{H}$ coupling required: matrix factorization

An example where breaking the strong coupling between ϵ_{g} and ϵ_{H} leads to relaxed requirements on gradient accuracy while attaining the same solution quality.

$$
f(\mathbf{U})=\frac{1}{2}\left\|\mathbf{U U}^{\top}-\mathbf{M}^{*}\right\|_{F}^{2}
$$

- $\mathbf{M}^{*} \in \mathbb{R}^{d \times d}$ is the unknown symmetric and positive semidefinite.
- $\operatorname{rank}\left(\mathbf{M}^{*}\right)=r<d$. The variable is $\mathbf{U} \in \mathbb{R}^{d \times r}$.
- σ_{1}^{\star}-the largest singular value of \mathbf{M}^{*}
σ_{r}^{\star}-the smallest nonzero singular value of \mathbf{M}^{*}.

No $\epsilon_{g}, \epsilon_{H}$ coupling required: matrix factorization

Properties of f (Jin et al. 2017):

- All local minima are global minima - \mathcal{X}^{\star}
- $\left(\frac{1}{24} \sigma_{r}^{\star 3 / 2}, \frac{1}{3} \sigma_{r}^{\star}\right)$-approximate SOSP is $\frac{1}{3} \sigma_{r}^{\star 1 / 2}$-close to \mathcal{X}^{\star}
- f satisfies local regularity condition in $\frac{1}{3} \sigma_{r}^{\star 1 / 2}$-neighborhood of \mathcal{X}^{\star}
- gradient descent converges linearly inside this neighborhood to an arbitrarily accurate solution.
- Algorithm 2 gets us to this neighborhood.
- For any $\Gamma>\sigma_{1}^{\star}$, inside the region $\left\{\mathbf{U}:\|\mathbf{U}\|_{\mathrm{op}}^{2}<\Gamma\right\}, f(\cdot)$ is
- $L=16 \Gamma$-gradient Lipschitz
- $M=24 \Gamma^{\frac{1}{2}}$-Hessian Lipschitz.

No $\epsilon_{g}, \epsilon_{H}$ coupling required: matrix factorization

Need $\left(\frac{1}{24} \sigma_{r}^{\star 3 / 2}, \frac{1}{3} \sigma_{r}^{\star}\right)$-approximate SOSP. Hessian Lipschitzness $M=24 \Gamma^{1 / 2}$.
Let $\kappa=\Gamma / \sigma_{r}^{\star}$

- Our work: $\epsilon_{g} \sim \sigma_{r}^{\star 3 / 2} \quad \epsilon_{H} \sim \sigma_{r}^{\star}$
- Previous work (Yao et al. 2022): $\epsilon_{H}=\sqrt{\epsilon_{g} M}$

$$
\epsilon_{g} \lesssim \sigma_{r}^{\star 3 / 2}, \sqrt{\epsilon_{g} M} \lesssim \sigma_{r}^{\star} \Longrightarrow \epsilon_{g} \sim \frac{\sigma_{r}^{\star 3 / 2}}{\sqrt{\kappa}} \quad \epsilon_{H} \sim \sigma_{r}^{\star}
$$

$\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \lesssim \epsilon_{g}$: Decoupling allows us to tolerate more error in the approximate gradient.

Concrete scenario in which only inexact evaluations are available: robust low-rank matrix sensing with Gaussian design (upcoming work)

- Sensing matrices $\mathbf{A}_{i} \in R^{d \times d}$ have i.i.d. standard Gaussian entries
- Measurements $y_{i}=\left\langle\mathbf{A}_{i}, \mathbf{M}^{*}\right\rangle=\operatorname{tr}\left(\mathbf{A}_{i}^{\top} \mathbf{M}^{*}\right)$
- $f_{i}(\mathbf{U})=\left(\left\langle\mathbf{U} \mathbf{U}^{\top}, \mathbf{A}_{i}\right\rangle-y_{i}\right)^{2} \Longrightarrow \mathbb{E} f_{i}(\mathbf{U})=f(\mathbf{U})$
- A fraction of $\left\{\left(\mathbf{A}_{i}, y_{i}\right)\right\}$ are arbitrarily corrupted

Relative gradient inexactness

Inexact gradient $g_{k} \quad$ True gradient $\nabla f\left(x_{k}\right)$

- Previous works: $\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \frac{1}{3} \epsilon_{g}$
- Our work: $\quad\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \frac{1}{3} \max \left\{\epsilon_{g},\left\|g_{k}\right\|\right\}$ Alternatively $\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \frac{1}{4} \max \left\{\epsilon_{g},\left\|\nabla f\left(x_{k}\right)\right\|\right\}$

Our algorithm is the first that tolerates relative gradient inexactness for second-order guarantee to the best of our knowledge
(Tolerating relative gradient inexactness for first-order guarantee is well-studied in, e.g., Paquette and Scheinberg 2020)

Relative gradient inexactness: finite-sum subsampling

Theorem
For a given $x \in \mathbb{R}^{d}$, suppose there is an upper bound $G(x)$ such that $\left\|\nabla f_{i}(x)\right\|_{2} \leq G(x)<\infty$ for all sample indices i.
For any given $\xi \in(0,1)$, if $\left|S_{g}(x)\right| \geq \Omega\left(\frac{G(x)}{\max \left\{\epsilon_{g},\|\nabla f(x)\|\right\}} \log (\xi)\right)^{2}$ where $S_{g}(x)$ is with-replacement sub-sampling indices, then for $g(x):=\frac{1}{\left|S_{g}(x)\right|} \sum_{i \in S_{g}(x)} \nabla f_{i}(x)$, we have

$$
\begin{equation*}
\mathbb{P}\left(\|\nabla f(x)-g(x)\|_{2} \leq \frac{1}{3} \max \left\{\epsilon_{g},\|g(x)\|\right\}\right) \geq 1-\xi . \tag{1}
\end{equation*}
$$

Cartis and Scheinberg 2018 has a similar relative gradient estimate, and they proposed an adaptive scheme for choosing $\left|S_{g}(x)\right|$ based on it.

Analysis (Expectation result)

- Gradient step:

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{6 L} \epsilon_{g}^{2}
$$

- Negative curvature step:

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{2 \epsilon_{H}^{3}}{9 M^{2}}+2 \frac{\alpha_{k}}{M} \nabla f\left(x_{k}\right)^{\top} \sigma_{k} \hat{p}_{k}
$$

Combining:

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right] \leq f\left(x_{k}\right)-\min \left(\frac{\epsilon_{g}^{2}}{6 L}, \frac{2 \epsilon_{H}^{3}}{9 M^{2}}\right)=f\left(x_{k}\right)-C_{\epsilon}
$$

Hence $M_{k}:=f\left(x_{k}\right)+k C_{\epsilon}$ is a supermartingale, i.e., $\mathbb{E}\left(M_{k+1} \mid \mathcal{G}_{k}\right) \leq M_{k}$
Our algorithm stops at iteration $N \Longrightarrow N$ is a stopping time.
Optional stopping theorem: $\mathbb{E} M_{N} \leq \mathbb{E} M_{0}$

Analysis (Expectation result)

$M_{k}:=f\left(x_{k}\right)+k C_{\epsilon} \quad \mathbb{E} M_{N} \leq \mathbb{E} M_{0}$
$\mathbb{E} M_{N}=\mathbb{E} f\left(x_{N}\right)+\mathbb{E} N \cdot C_{\epsilon} \geq \bar{f}+\mathbb{E} N \cdot C_{\epsilon}$
$\mathbb{E} M_{0}=f\left(x_{0}\right)$
Hence

$$
\mathbb{E} N \leq \frac{f\left(x_{0}\right)-\bar{f}}{C_{\epsilon}}=\frac{f\left(x_{0}\right)-\bar{f}}{\min \left(\frac{\epsilon_{g}^{2}}{6 L}, \frac{2 \epsilon_{H}^{3}}{9 M^{2}}\right)}
$$

Analysis (High probability result)

Analysis is much more complicated.
Markov inequality: with probability at least δ, it holds that $N \leq \frac{f\left(x_{0}\right)-\bar{f}}{\delta C_{\epsilon}}$.
Our complexity bound has only logarithmic dependence on δ.
Main elements of the analysis:

- Bound the function value increase of "wrong" negative curvature steps
- Cannot have too many "wrong" steps, by Azuma-Hoeffding's inequality
- Use the descent lemma from gradient descent to offset wrong negative curvature steps

Summary

- Finding SOSPs using inexact gradients and Hessians
- Simple short step method, no function value evaluation needed
- "Flip a coin" to determine the sign of negative curvature steps
- Complexity obtained for expected and high probability runtime: comparable to deterministic algorithm with exact evaluations
- Requires no coupling between ϵ_{g} and ϵ_{H} (helpful for some problems, e.g., robust low-rank matrix sensing)
- Relative gradient inexactness condition
- Motivated by applications to robust low-rank matrix sensing

References I

Cartis, Coralia and Katya Scheinberg (2018). "Global convergence rate analysis of unconstrained optimization methods based on probabilistic models". In: Mathematical Programming 169, pp. 337-375.
围 Jin, Chi et al. (2017). "How to Escape Saddle Points Efficiently". In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML'17. Sydney, NSW, Australia: JMLR.org, pp. 1724-1732.
俥
Paquette, Courtney and Katya Scheinberg (2020). "A stochastic line search method with expected complexity analysis". In: SIAM J. Optim. 30.1, pp. 349-376. ISSN: 1052-6234. DOI: 10.1137/18M1216250. URL:
https://doi.org/10.1137/18M1216250.

References II

嗇 Wright, Stephen J. and Benjamin Recht (2022). Optimization for data analysis. Cambridge University Press, Cambridge, pp. x+227. ISBN: 978-1-316-51898-4. DOI: 10.1017/9781009004282. URL: https://doi.org/10.1017/9781009004282.
呞 Yao, Zhewei et al. (Aug. 2022). "Inexact Newton-CG algorithms with complexity guarantees". In: IMA Journal of Numerical Analysis. ISSN: 0272-4979. DOI: 10.1093/imanum/drac043. URL:
https://doi.org/10.1093/imanum/drac043.

[^0]: ${ }^{1}$ University of Wisconsin-Madison

