A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees

Shuyao Li $^{\rm 1}$ Joint work with Stephen Wright $^{\rm 1}$

SIAM Conference on Optimization June 1, 2023

¹University of Wisconsin—Madison

Problem Setup

Find an approximate second-order stationary point (SOSP) x^* of

 $\min_{x \in \mathbb{R}^d} f(x).$

- $\begin{array}{l} \bullet \quad (\epsilon_g, \epsilon_H) \text{-approximate SOSP (we assume no } \epsilon_g \text{ and } \epsilon_H \text{ coupling):} \\ \|\nabla f(x^*)\| \leq \epsilon_g, \quad \lambda_{\min} \left(\nabla^2 f(x^*) \right) \geq -\epsilon_H. \end{array}$
- f has L-Lipschitz gradient and M-Lipschitz Hessian
- f is bounded below by $\bar{f} > -\infty$.
- ▶ Inexact evaluations at iterate *x_k*:
 - Inexact gradient g_k such that $||g_k \nabla f(x_k)|| \le \frac{1}{3} \max\{\epsilon_g, ||g_k||\}$
 - Inexact Hessian \mathbf{H}_k such that $\|\mathbf{H}_k \nabla^2 f(x_k)\|_{\mathrm{op}} \leq \frac{2}{9}\epsilon_H$
 - Only need Hessian for a fraction of iterations
 - No function evaluation $f(x_k)$ is needed

More general than mini-batching in stochastic optimization

Basic algorithm with exact evaluations

Algorithm 1: Wright and Recht 2022[Section 3.6]

$$\begin{split} & \text{if } \|\nabla f(x_k)\| > \epsilon_g \text{ then} \\ & \text{ } // \text{ gradient step} \\ & x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k) \\ & \text{else if } \lambda_k := \lambda_{\min} (\nabla^2 f(x_k)) < -\epsilon_H \text{ then} \\ & \text{ } // \text{ negative curvature step} \\ & p_k \leftarrow \text{ unit minimum eigenvector of } \nabla^2 f(x_k) \text{ with } \nabla f(x_k)^\top p_k \leq 0 \\ & x_{k+1} = x_k + \frac{2\epsilon_H}{M} p_k \\ & \text{else} \end{aligned}$$

_ return x_k

Basic algorithm with exact evaluations: complexity

Gradient descent analysis is standard

$$f(x_{k+1}) \le f(x_k) - \frac{\epsilon_g^2}{2L}$$

Negative curvature step:

$$f(x_{k+1}) = f(x_k + \frac{2\epsilon_H}{M}p_k)$$

$$\leq f(x_k) + 2\frac{\epsilon_H}{M}\underbrace{\nabla f(x_k)^\top p_k}_{\leq 0} + \frac{1}{2} \cdot \frac{4\epsilon_H^2}{M^2}\underbrace{p_k^\top \nabla^2 f(x_k)p_k}_{<-\epsilon_H} + \frac{M}{6} \cdot \frac{8\epsilon_H^3}{M^3}$$

$$\leq f(x_k) - \frac{2\epsilon_H^3}{3M^2}$$

▶ Complexity guarantee: Algorithm 1 terminates at an (ϵ_g, ϵ_H) -approximate SOSP in at most

$$\frac{f(x_0) - \bar{f}}{\min\left(\frac{\epsilon_g^2}{2L}, \frac{2\epsilon_H^3}{3M^2}\right)} \text{ iterations.}$$

Algorithm with inexact evaluations

Inexact gradient g_k such that $||g_k - \nabla f(x_k)|| \le \frac{1}{3} \max\{\epsilon_g, ||g_k||\}$ Inexact Hessian \mathbf{H}_k such that $||\mathbf{H}_k - \nabla^2 f(x_k)|| \le \frac{2}{9}\epsilon_H$

Algorithm 2: Our algorithm

$$\begin{array}{l} \text{if } \|g_k\| > \epsilon_g \text{ then} \\ | \ // \ \text{gradient step} \\ x_{k+1} = x_k - \frac{1}{L}g_k \\ \text{else if } \hat{\lambda}_k := \lambda_{\min}(\mathbf{H}_k) < -\epsilon_H \text{ then} \\ | \ // \ \text{negative curvature step} \\ \hat{p}_k \leftarrow \text{ unit minimum eigenvector of } \mathbf{H}_k \\ \text{Draw } \sigma_k \leftarrow \pm 1 \text{ with probability } \frac{1}{2} \\ x_{k+1} = x_k + \frac{2\epsilon_H}{M}\sigma_k \hat{p}_k \\ \text{else} \\ | \ \text{return } x_k \end{array}$$

Complexity Guarantee

Theorem

- ▶ If Algorithm 2 terminates and returns x_n , then x_n is an $(\frac{4}{3}\epsilon_g, \frac{4}{3}\epsilon_H)$ -approximate SOSP.
- ► Expected: Let N denote the iteration at which Algorithm 2 terminates. Then N < ∞ with probability one and</p>

$$\mathbb{E}N \le \frac{f(x_0) - \bar{f}}{C_{\epsilon}}, \qquad C_{\epsilon} := \min\left(\frac{\epsilon_g^2}{6L}, \frac{2\epsilon_H^3}{9M^2}\right)$$

Same complexity as the deterministic algorithm with exact evaluations.

▶ **High-Probability:** Algorithm 2 terminates after n iterations with probability $1 - \delta$, for

$$n = O\left(\frac{f(x_0) - \bar{f}}{C_{\epsilon}} + \frac{1}{\tau^2} \left(\frac{ML\epsilon_g}{\epsilon_H^3}\right)^{1+\tau} \log\left(\frac{1}{\delta}\right)\right),$$

where we can choose τ to be a small constant at the expense of a large constant factor

Interpreting the high-probability complexity guarantee

$$\begin{split} n &= \tilde{O} \bigg(\underbrace{\frac{f(x_0) - \bar{f}}{C_{\epsilon}}}_{K} + \underbrace{\frac{\operatorname{High probability correction}}{1}_{\tau^2} \bigg(\frac{ML\epsilon_g}{\epsilon_H^3} \bigg)^{1 + \tau} \bigg) \\ C_{\epsilon} &= \min \left(\frac{\epsilon_g^2}{6L}, \frac{2\epsilon_H^3}{9M^2} \right) \end{split}$$

 $\begin{array}{l} \text{Corollary} \\ \epsilon_H = \sqrt{\epsilon_g M} \quad \text{Choosing } \tau = 1 \text{ gives } n = \tilde{O}(\frac{1}{\epsilon_g^2}). \\ \\ \epsilon_g \text{ and } \epsilon_H \text{ satisfy } \frac{\epsilon_g^2}{6L} = \frac{2\epsilon_H^3}{9M^2} \quad \text{Choosing } \tau = 1 \text{ gives } n = \tilde{O}(\frac{1}{\epsilon_g^2}). \end{array}$

No coupling between ϵ_g and ϵ_H required

Previous work (Yao et al. 2022) considered the same general inexact settings, but

▶ Can only handle $\epsilon_H = O(\sqrt{\epsilon_g})$ — "strong coupling"

Analyze the cubic to choose a stepsize

$$f(x_{k+1}) = f(x_k + \frac{2\alpha_k}{M}\hat{p}_k)$$

$$\leq f(x_k) + 2\frac{\alpha_k}{M}\nabla f(x_k)^{\top}\hat{p}_k + \frac{1}{2} \cdot \frac{4\alpha_k^2}{M^2}\hat{p}_k^{\top}\nabla^2 f(x_k)\hat{p}_k + \frac{M}{6} \cdot \frac{8\alpha_k^3}{M^3}$$

Lead to worse (stricter) gradient inexactness tolerance

No ϵ_g, ϵ_H coupling required: matrix factorization

An example where breaking the strong coupling between ϵ_g and ϵ_H leads to relaxed requirements on gradient accuracy while attaining the same solution quality.

$$f(\mathbf{U}) = \frac{1}{2} \left\| \mathbf{U} \mathbf{U}^{\top} - \mathbf{M}^* \right\|_F^2$$

▶ $\mathbf{M}^* \in \mathbb{R}^{d \times d}$ is the unknown symmetric and positive semidefinite.

- ▶ rank(\mathbf{M}^*) = r < d. The variable is $\mathbf{U} \in \mathbb{R}^{d \times r}$.
- σ₁^{*}—the largest singular value of M^{*}
 σ_r^{*}—the smallest nonzero singular value of M^{*}.

No ϵ_g, ϵ_H coupling required: matrix factorization

Properties of f (Jin et al. 2017):

- ▶ All local minima are global minima X^{\star}
- ▶ $(\frac{1}{24}\sigma_r^{\star 3/2}, \frac{1}{3}\sigma_r^{\star})$ -approximate SOSP is $\frac{1}{3}\sigma_r^{\star 1/2}$ -close to \mathcal{X}^{\star}
- f satisfies local regularity condition in $\frac{1}{3}\sigma_r^{\star 1/2}$ -neighborhood of \mathcal{X}^{\star}
 - gradient descent converges linearly inside this neighborhood to an arbitrarily accurate solution.
 - Algorithm 2 gets us to this neighborhood.
- For any $\Gamma > \sigma_1^{\star}$, inside the region $\{\mathbf{U} : \|\mathbf{U}\|_{op}^2 < \Gamma\}$, $f(\cdot)$ is
 - $L = 16\Gamma$ -gradient Lipschitz
 - $M = 24\Gamma^{\frac{1}{2}}$ -Hessian Lipschitz.

No ϵ_g, ϵ_H coupling required: matrix factorization

Need $(\frac{1}{24}\sigma_r^{\star 3/2}, \frac{1}{3}\sigma_r^{\star})$ -approximate SOSP. Hessian Lipschitzness $M = 24\Gamma^{1/2}$. Let $\kappa = \Gamma/\sigma_r^{\star}$

• Our work:
$$\epsilon_g \sim \sigma_r^{\star 3/2}$$
 $\epsilon_H \sim \sigma_r^{\star}$

▶ Previous work (Yao et al. 2022): $\epsilon_H = \sqrt{\epsilon_g M}$ $\epsilon_g \lesssim \sigma_r^{\star 3/2}, \sqrt{\epsilon_g M} \lesssim \sigma_r^{\star} \implies \epsilon_g \sim \frac{\sigma_r^{\star 3/2}}{\sqrt{\kappa}} \quad \epsilon_H \sim \sigma_r^{\star}.$

 $||g_k - \nabla f(x_k)|| \lesssim \epsilon_g$: Decoupling allows us to tolerate more error in the approximate gradient.

Concrete scenario in which only inexact evaluations are available: robust low-rank matrix sensing with Gaussian design (upcoming work)

- Sensing matrices $\mathbf{A}_i \in R^{d \times d}$ have i.i.d. standard Gaussian entries
- Measurements $y_i = \langle \mathbf{A}_i, \mathbf{M}^* \rangle = \operatorname{tr}(\mathbf{A}_i^\top \mathbf{M}^*)$
- $\blacktriangleright f_i(\mathbf{U}) = (\langle \mathbf{U}\mathbf{U}^\top, \mathbf{A}_i \rangle y_i)^2 \implies \mathbb{E}f_i(\mathbf{U}) = f(\mathbf{U})$
- A fraction of $\{(\mathbf{A}_i, y_i)\}$ are arbitrarily corrupted

Relative gradient inexactness

Inexact gradient g_k True gradient $\nabla f(x_k)$

• Previous works: $||g_k - \nabla f(x_k)|| \leq \frac{1}{3}\epsilon_g$

► Our work: $||g_k - \nabla f(x_k)|| \le \frac{1}{3} \max\{\epsilon_g, ||g_k||\}$ Alternatively $||g_k - \nabla f(x_k)|| \le \frac{1}{4} \max\{\epsilon_g, ||\nabla f(x_k)||\}$

Our algorithm is the first that tolerates **<u>relative</u>** gradient inexactness for **second-order guarantee** to the best of our knowledge

(Tolerating relative gradient inexactness for first-order guarantee is well-studied in, *e.g.*, Paquette and Scheinberg 2020)

Relative gradient inexactness: finite-sum subsampling

Theorem

For a given $x \in \mathbb{R}^d$, suppose there is an upper bound G(x) such that $\|\nabla f_i(x)\|_2 \leq G(x) < \infty$ for all sample indices i. For any given $\xi \in (0, 1)$, if $|S_g(x)| \geq \Omega\left(\frac{G(x)}{\max\{\epsilon_g, \|\nabla f(x)\|\}}\log(\xi)\right)^2$ where $S_g(x)$ is with-replacement sub-sampling indices, then for $g(x) := \frac{1}{|S_g(x)|} \sum_{i \in S_g(x)} \nabla f_i(x)$, we have $\mathbb{P}\left(\|\nabla f(x) - g(x)\|_2 \leq \frac{1}{3} \max\{\epsilon_g, \|g(x)\|\}\right) \geq 1 - \xi.$ (1)

Cartis and Scheinberg 2018 has a similar relative gradient estimate, and they proposed an adaptive scheme for choosing $|S_q(x)|$ based on it.

Analysis (Expectation result)

Gradient step:

$$f(x_{k+1}) \le f(x_k) - \frac{1}{6L}\epsilon_g^2$$

Negative curvature step:

$$f(x_{k+1}) \le f(x_k) - \frac{2\epsilon_H^3}{9M^2} + 2\frac{\alpha_k}{M}\nabla f(x_k)^\top \sigma_k \hat{p}_k$$

Combining:

$$\mathbb{E}\left[f(x_{k+1})|x_k\right] \le f(x_k) - \min\left(\frac{\epsilon_g^2}{6L}, \frac{2\epsilon_H^3}{9M^2}\right) = f(x_k) - C_\epsilon$$

Hence $M_k := f(x_k) + kC_{\epsilon}$ is a supermartingale, *i.e.*, $\mathbb{E}(M_{k+1} | \mathcal{G}_k) \le M_k$ Our algorithm stops at iteration $N \implies N$ is a stopping time.

Optional stopping theorem: $\mathbb{E}M_N \leq \mathbb{E}M_0$

Analysis (Expectation result)

$$M_k := f(x_k) + kC_{\epsilon} \quad \mathbb{E}M_N \le \mathbb{E}M_0$$
$$\mathbb{E}M_N = \mathbb{E}f(x_N) + \mathbb{E}N \cdot C_{\epsilon} \ge \bar{f} + \mathbb{E}N \cdot C_{\epsilon}$$
$$\mathbb{E}M_0 = f(x_0)$$

Hence

$$\mathbb{E}N \le \frac{f(x_0) - \bar{f}}{C_{\epsilon}} = \frac{f(x_0) - \bar{f}}{\min\left(\frac{\epsilon_g^2}{6L}, \frac{2\epsilon_H^3}{9M^2}\right)}$$

Analysis (High probability result)

Analysis is much more complicated.

Markov inequality: with probability at least δ , it holds that $N \leq \frac{f(x_0) - \bar{f}}{\delta C_{\epsilon}}$.

Our complexity bound has only logarithmic dependence on δ .

Main elements of the analysis:

- Bound the function value increase of "wrong" negative curvature steps
- Cannot have too many "wrong" steps, by Azuma-Hoeffding's inequality
- Use the descent lemma from gradient descent to offset wrong negative curvature steps

Summary

- Finding SOSPs using inexact gradients and Hessians
- Simple short step method, no function value evaluation needed
- "Flip a coin" to determine the sign of negative curvature steps
- Complexity obtained for expected and high probability runtime: comparable to deterministic algorithm with exact evaluations
- Requires no coupling between ϵ_g and ϵ_H (helpful for some problems, *e.g.*, robust low-rank matrix sensing)
- Relative gradient inexactness condition
- Motivated by applications to robust low-rank matrix sensing

References I

- Cartis, Coralia and Katya Scheinberg (2018). "Global convergence rate analysis of unconstrained optimization methods based on probabilistic models". In: *Mathematical Programming* 169, pp. 337–375.
- Jin, Chi et al. (2017). "How to Escape Saddle Points Efficiently". In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML'17. Sydney, NSW, Australia: JMLR.org, pp. 1724–1732.

Paquette, Courtney and Katya Scheinberg (2020). "A stochastic line search method with expected complexity analysis". In: SIAM J. Optim. 30.1, pp. 349–376. ISSN: 1052-6234. DOI: 10.1137/18M1216250. URL: https://doi.org/10.1137/18M1216250.

References II

Wright, Stephen J. and Benjamin Recht (2022). Optimization for data analysis. Cambridge University Press, Cambridge, pp. x+227.
 ISBN: 978-1-316-51898-4. DOI: 10.1017/9781009004282. URL: https://doi.org/10.1017/9781009004282.

Yao, Zhewei et al. (Aug. 2022). "Inexact Newton-CG algorithms with complexity guarantees". In: *IMA Journal of Numerical Analysis*. ISSN: 0272-4979. DOI: 10.1093/imanum/drac043. URL: https://doi.org/10.1093/imanum/drac043.