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Problem Setup

Find an approximate second-order stationary point (SOSP) x∗ of

min
x∈Rd

f(x).

▶ (ϵg, ϵH)-approximate SOSP (we assume no ϵg and ϵH coupling):
∥∇f(x∗)∥ ≤ ϵg, λmin

(
∇2f(x∗)

)
≥ −ϵH .

▶ f has L-Lipschitz gradient and M -Lipschitz Hessian

▶ f is bounded below by f̄ > −∞.

▶ Inexact evaluations at iterate xk:
– Inexact gradient gk such that ∥gk −∇f(xk)∥ ≤ 1

3
max{ϵg, ∥gk∥}

– Inexact Hessian Hk such that ∥Hk −∇2f(xk)∥op ≤ 2
9
ϵH

– Only need Hessian for a fraction of iterations
– No function evaluation f(xk) is needed

▶ More general than mini-batching in stochastic optimization
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Basic algorithm with exact evaluations

Algorithm 1: Wright and Recht 2022[Section 3.6]

if ∥∇f(xk)∥ > ϵg then
// gradient step

xk+1 = xk − 1
L∇f(xk)

else if λk := λmin(∇2f(xk)) < −ϵH then
// negative curvature step

pk ← unit minimum eigenvector of ∇2f(xk) with ∇f(xk)
⊤pk ≤ 0

xk+1 = xk + 2ϵH
M pk

else
return xk
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Basic algorithm with exact evaluations: complexity

▶ Gradient descent analysis is standard

f(xk+1) ≤ f(xk)−
ϵ2g
2L

▶ Negative curvature step:

f(xk+1) = f(xk +
2ϵH
M

pk)

≤ f(xk) + 2
ϵH
M
∇f(xk)

⊤pk︸ ︷︷ ︸
≤0

+
1

2
· 4ϵ

2
H

M2
p⊤k∇2f(xk)pk︸ ︷︷ ︸

<−ϵH

+
M

6
· 8ϵ

3
H

M3

≤ f(xk)−
2ϵ3H
3M2

▶ Complexity guarantee: Algorithm 1 terminates at an (ϵg, ϵH)-
approximate SOSP in at most

f(x0)− f̄

min
(

ϵ2g
2L ,

2ϵ3H
3M2

) iterations.
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Algorithm with inexact evaluations

Inexact gradient gk such that ∥gk −∇f(xk)∥ ≤ 1
3 max{ϵg, ∥gk∥}

Inexact Hessian Hk such that ∥Hk −∇2f(xk)∥ ≤ 2
9ϵH

Algorithm 2: Our algorithm

if ∥gk∥ > ϵg then
// gradient step

xk+1 = xk − 1
Lgk

else if λ̂k := λmin(Hk) < −ϵH then
// negative curvature step

p̂k ← unit minimum eigenvector of Hk

Draw σk ← ±1 with probability 1
2

xk+1 = xk + 2ϵH
M σkp̂k

else
return xk
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Complexity Guarantee

Theorem
▶ If Algorithm 2 terminates and returns xn, then xn is an

( 43ϵg,
4
3ϵH)-approximate SOSP.

▶ Expected: Let N denote the iteration at which Algorithm 2
terminates. Then N <∞ with probability one and

EN ≤ f(x0)− f̄

Cϵ
, Cϵ := min

(
ϵ2g
6L

,
2ϵ3H
9M2

)
Same complexity as the deterministic algorithm with exact evaluations.

▶ High-Probability: Algorithm 2 terminates after n iterations with
probability 1− δ, for

n = O

(
f(x0)− f̄

Cϵ
+

1

τ2

(MLϵg
ϵ3H

)1+τ

log
(1
δ

))
,

where we can choose τ to be a small constant at the expense of a
large constant factor
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Interpreting the high-probability complexity guarantee

n = Õ

( Expected︷ ︸︸ ︷
f(x0)− f̄

Cϵ
+

High probability correction︷ ︸︸ ︷
1

τ2

(MLϵg
ϵ3H

)1+τ
)

Cϵ = min

(
ϵ2g
6L

,
2ϵ3H
9M2

)

Corollary
ϵH =

√
ϵgM Choosing τ = 1 gives n = Õ( 1

ϵ2g
).

ϵg and ϵH satisfy
ϵ2g
6L =

2ϵ3H
9M2 Choosing τ = 1 gives n = Õ( 1

ϵ2g
).
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No coupling between ϵg and ϵH required

Previous work (Yao et al. 2022) considered the same general inexact
settings, but

▶ Can only handle ϵH = O(
√
ϵg)— “strong coupling”

▶ Analyze the cubic to choose a stepsize

f(xk+1) = f(xk +
2αk

M
p̂k)

≤ f(xk) + 2
αk

M
∇f(xk)

⊤p̂k +
1

2
· 4α

2
k

M2
p̂⊤k∇2f(xk)p̂k +

M

6
· 8α

3
k

M3

▶ Lead to worse (stricter) gradient inexactness tolerance

8/17



No ϵg, ϵH coupling required: matrix factorization

An example where breaking the strong coupling between ϵg and ϵH leads
to relaxed requirements on gradient accuracy while attaining the same
solution quality.

f(U) =
1

2

∥∥UU⊤ −M∗∥∥2
F

▶ M∗ ∈ Rd×d is the unknown symmetric and positive semidefinite.

▶ rank(M∗) = r < d. The variable is U ∈ Rd×r.

▶ σ⋆
1—the largest singular value of M∗

σ⋆
r—the smallest nonzero singular value of M∗.
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No ϵg, ϵH coupling required: matrix factorization

Properties of f (Jin et al. 2017):

▶ All local minima are global minima — X ⋆

▶ ( 1
24σ

⋆
r
3/2, 1

3σ
⋆
r )-approximate SOSP is 1

3σ
⋆
r
1/2-close to X ⋆

▶ f satisfies local regularity condition in 1
3σ

⋆
r
1/2-neighborhood of X ⋆

– gradient descent converges linearly inside this neighborhood to an
arbitrarily accurate solution.

– Algorithm 2 gets us to this neighborhood.

▶ For any Γ > σ⋆
1 , inside the region {U : ∥U∥2op < Γ}, f(·) is

– L = 16Γ-gradient Lipschitz

– M = 24Γ
1
2 -Hessian Lipschitz.
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No ϵg, ϵH coupling required: matrix factorization

Need ( 1
24
σ⋆
r
3/2, 1

3
σ⋆
r )-approximate SOSP. Hessian Lipschitzness M = 24Γ1/2.

Let κ = Γ/σ⋆
r

▶ Our work: ϵg ∼ σ⋆
r
3/2 ϵH ∼ σ⋆

r

▶ Previous work (Yao et al. 2022): ϵH =
√
ϵgM

ϵg ≲ σ⋆
r
3/2,

√
ϵgM ≲ σ⋆

r =⇒ ϵg ∼ σ⋆
r
3/2

√
κ

ϵH ∼ σ⋆
r .

∥gk −∇f(xk)∥ ≲ ϵg: Decoupling allows us to tolerate more error in the
approximate gradient.

Concrete scenario in which only inexact evaluations are available:
robust low-rank matrix sensing with Gaussian design (upcoming work)
▶ Sensing matrices Ai ∈ Rd×d have i.i.d. standard Gaussian entries
▶ Measurements yi = ⟨Ai,M

∗⟩ = tr(A⊤
i M

∗)
▶ fi(U) = (⟨UU⊤,Ai⟩ − yi)

2 =⇒ Efi(U) = f(U)
▶ A fraction of {(Ai, yi)} are arbitrarily corrupted
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Relative gradient inexactness

Inexact gradient gk True gradient ∇f(xk)

▶ Previous works: ∥gk −∇f(xk)∥ ≤ 1
3ϵg

▶ Our work: ∥gk −∇f(xk)∥ ≤ 1
3 max{ϵg, ∥gk∥}

Alternatively ∥gk −∇f(xk)∥ ≤ 1
4 max{ϵg, ∥∇f(xk)∥}

Our algorithm is the first that tolerates relative gradient inexactness for
second-order guarantee to the best of our knowledge

(Tolerating relative gradient inexactness for first-order guarantee is
well-studied in, e.g., Paquette and Scheinberg 2020)
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Relative gradient inexactness: finite-sum subsampling

Theorem
For a given x ∈ Rd, suppose there is an upper bound G(x) such that
∥∇fi(x)∥2 ≤ G(x) <∞ for all sample indices i.

For any given ξ ∈ (0, 1), if |Sg(x)| ≥ Ω
(

G(x)
max{ϵg,∥∇f(x)∥} log(ξ)

)2
where

Sg(x) is with-replacement sub-sampling indices, then for
g(x) := 1

|Sg(x)|
∑

i∈Sg(x)
∇fi(x), we have

P
(
∥∇f(x)− g(x)∥2 ≤

1

3
max{ϵg, ∥g(x)∥}

)
≥ 1− ξ. (1)

Cartis and Scheinberg 2018 has a similar relative gradient estimate, and
they proposed an adaptive scheme for choosing |Sg(x)| based on it.
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Analysis (Expectation result)

▶ Gradient step:

f(xk+1) ≤ f(xk)−
1

6L
ϵ2g

▶ Negative curvature step:

f(xk+1) ≤ f(xk)−
2ϵ3H
9M2

+ 2
αk

M
∇f(xk)

⊤σkp̂k

Combining:

E [f(xk+1)|xk] ≤ f(xk)−min

(
ϵ2g
6L

,
2ϵ3H
9M2

)
= f(xk)− Cϵ

Hence Mk := f(xk) + kCϵ is a supermartingale, i.e., E(Mk+1 |Gk) ≤Mk

Our algorithm stops at iteration N =⇒ N is a stopping time.

Optional stopping theorem: EMN ≤ EM0
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Analysis (Expectation result)

Mk := f(xk) + kCϵ EMN ≤ EM0

EMN = Ef(xN ) + EN · Cϵ ≥ f̄ + EN · Cϵ

EM0 = f(x0)

Hence

EN ≤ f(x0)− f̄

Cϵ
=

f(x0)− f̄

min
(

ϵ2g
6L ,

2ϵ3H
9M2

)
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Analysis (High probability result)

Analysis is much more complicated.

Markov inequality: with probability at least δ, it holds that N ≤ f(x0)−f̄
δCϵ

.

Our complexity bound has only logarithmic dependence on δ.

Main elements of the analysis:

▶ Bound the function value increase of “wrong” negative curvature
steps

▶ Cannot have too many “wrong” steps, by Azuma-Hoeffding’s
inequality

▶ Use the descent lemma from gradient descent to offset wrong
negative curvature steps
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Summary

▶ Finding SOSPs using inexact gradients and Hessians

▶ Simple short step method, no function value evaluation needed

▶ “Flip a coin” to determine the sign of negative curvature steps

▶ Complexity obtained for expected and high probability runtime:
comparable to deterministic algorithm with exact evaluations

▶ Requires no coupling between ϵg and ϵH (helpful for some problems,
e.g., robust low-rank matrix sensing)

▶ Relative gradient inexactness condition

▶ Motivated by applications to robust low-rank matrix sensing
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