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Problem Setup

Find an approximate second-order stationary point (SOSP) z* of

min f(x).

zERC

» (e4,€m)-approximate SOSP (we assume no €, and ¢y coupling):
IV <eg Amin (V2f(2*)) = —en.

» f has L-Lipschitz gradient and M-Lipschitz Hessian
» f is bounded below by f > —oc.

» [nexact evaluations at iterate xy:
— Inexact gradient gi such that ||gr — V f(xx)|| < 3 max{eg, [|gx|}
— Inexact Hessian Hy, such that |[Hgy — V? f (k) |lop < Zen
— Only need Hessian for a fraction of iterations
— No function evaluation f(xx) is needed

» More general than mini-batching in stochastic optimization
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Basic algorithm with exact evaluations

Algorithm 1: Wright and Recht 2022[Section 3.6]

if |V f(zr)|| > e, then
// gradient step
Tht1 = Tk — %Vf(ffk)
Ise if \x := Amin(V2f(21)) < —ey then
// negative curvature step
Pk < unit minimum eigenvector of V2 f(z) with V f(x;) 'pr <0
Tpr1 = Tk + Ly
else
| return

®
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Basic algorithm with exact evaluations: complexity

» Gradient descent analysis is standard
2

flane) < f(on) = 5

» Negative curvature step:

Fleni) = Flan+ S m)

€ M 8¢
< flaw) + 2* YV f (k) pr + 3 ng;erf(xk)Pk +€ : ﬁ’;
<0 <—em
26%

» Complexity guarantee: Algorithm 1 terminates at an (eg, €m)-
approximate SOSP in at most
T foo. .
M iterations.
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Algorithm with inexact evaluations

Inexact gradient gy such that [|gx — V f(zx)|| < 3 max{ey, [|gx/}

Inexact Hessian Hy, such that |[H, — V2 f(z)|| < 2eq

Algorithm 2: Our algorithm

if ||gx|l > €4 then
// gradient step
Tpi1 = Tk — L9k

Ise if A\; := Anin(Hg) < —eg then
// negative curvature step
Pi < unit minimum eigenvector of Hy,
Draw oy, < il with probability %
Thi1 = Tp + 2 S okpk

else
| return xg

®
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Complexity Guarantee

Theorem
» If Algorithm 2 terminates and returns x.,, then x,, is an
(%eg, %eH)—approximate SOSP.

> Expected: Let N denote the iteration at which Algorithm 2
terminates. Then N < oo with probability one and

flzo) — f . 63 2¢3
<2 4 = 9 ~H
EN . , C. := min AV

Same complexity as the deterministic algorithm with exact evaluations.

» High-Probability: Algorithm 2 terminates after n iterations with
probability 1 — 6, for

f(zo) —f 1 /MLey\1+7 1
—o( T (550 ().
" ( C. * 2\ € e\5
where we can choose T to be a small constant at the expense of a
large constant factor
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Interpreting the high-probability complexity guarantee

Expected High probability correction
—_—— —_—
- To) — 1 /MLe,\1+7
n=0 <f(0)f —+ - ( 3 g)
C. T €

Corollary
e = \/egM  Choosing 7 =1 gives n = O(%).

P)
€9

3
€y

2
. €g _
€g and ey satisfy & = g3t

Choosing T =1 gives n = O(eiz)
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No coupling between ¢, and ¢y required

Previous work (Yao et al. 2022) considered the same general inexact
settings, but

» Can only handle ez = O(,/€;)— “strong coupling”
> Analyze the cubic to choose a stepsize

20

f@rtr) = flar + - o)

1 4 M 8
T A AT —2 “
Sf(xk)"‘2MCf(fflc) pk+§'mpkv f(xk)pk+—6 e

> Lead to worse (stricter) gradient inexactness tolerance
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No ¢,, ey coupling required: matrix factorization

An example where breaking the strong coupling between ¢, and e leads
to relaxed requirements on gradient accuracy while attaining the same
solution quality.

2
F

1
f(U) =5 |luuT - M
» M* € R¥*? is the unknown symmetric and positive semidefinite.

» rank(M*) = r < d. The variable is U € R?*".

» oj—the largest singular value of M*
or—the smallest nonzero singular value of M*.
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No ¢,, ey coupling required: matrix factorization

Properties of f (Jin et al. 2017):
» All local minima are global minima — X

> (iaﬁm, %o:)—approximate SOSP is %0:1/2—c|ose to A~

» f satisfies local regularity condition in %0;1/2—neighborhood of X*
— gradient descent converges linearly inside this neighborhood to an
arbitrarily accurate solution.

— Algorithm 2 gets us to this neighborhood.

> For any I' > o7, inside the region {U : [|U|2) < T}, f(-) is
— L = 16I"-gradient Lipschitz
— M = 24T'2 -Hessian Lipschitz.
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No ¢,, ei coupling required: matrix factorization
Need (550752, o7)-approximate SOSP. Hessian Lipschitzness M = 24T'/2,
Let k =T/o)

» Our work: €4 ~ o3 ey ~ ok

» Previous work (Yao et al. 2022): ey = /e, M
%3/2

*3/2 * O
€g Sor3? JegM S of = €~ T €H ~ Oy

llgr — Vf(zk)|| S €g: Decoupling allows us to tolerate more error in the
approximate gradient.

Concrete scenario in which only inexact evaluations are available:
robust low-rank matrix sensing with Gaussian design (upcoming work)
» Sensing matrices A; € R¥? have i.i.d. standard Gaussian entries
> Measurements y; = (A;, M*) = tr(A M*)
> fi(U) = ((UUT,A)) —4:)* = Efi(U) = f(U)
» A fraction of {(A;,y;)} are arbitrarily corrupted
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Relative gradient inexactness

Inexact gradient gy True gradient V f(zy)
> Previous works: [lgr — V f(zx)|| < eq

> Our work: |lgr — Vf(zx)|| < 5 max{eg, [lgrll}
Alternatively ||gr — V f(zi)| < %max{eg, IV f(xe)}

Our algorithm is the first that tolerates relative gradient inexactness for
second-order guarantee to the best of our knowledge

(Tolerating relative gradient inexactness for first-order guarantee is
well-studied in, e.g., Paquette and Scheinberg 2020)
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Relative gradient inexactness: finite-sum subsampling

Theorem
For a given x € R?, suppose there is an upper bound G(z) such that
|V fi(z)|l2 < G(z) < oo for all sample indices 1.

2
For any given § € (0,1), if |Sq(z)| > Q(mﬂ% log(§)> where
Sq(x) is with-replacement sub-sampling indices, then for

g(x) = m > ics,(x) V/i(z), we have

P (19560 - gl < gmaxtep @} =16 (@

Cartis and Scheinberg 2018 has a similar relative gradient estimate, and
they proposed an adaptive scheme for choosing |S,(z)| based on it.
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Analysis (Expectation result)

» Gradient step:

1
f(@r1) < flog) — 6763
» Negative curvature step:
Flonn) < ) = 2+ 25 f(ay) Tos
Tr+1) = J(Tk) = 9o Vi Tk) OkPk

Combining:

2 3
2ey

E[f(zrs1)lzr] < f(ax) — min <6€z, 9M2> = flar) — Ce

Hence M, := f(x1) + kC. is a supermartingale, i.e., E(Myy1|Gr) < My,
Our algorithm stops at iteration N = N is a stopping time.

Optional stopping theorem: EMy < EM,
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Analysis (Expectation result)

My = f(xk) +kCe EMy < EMj

EMy =Ef(zy)+EN-C. > f+EN - C,

EMy = f(xo)
Hence _ _
SRPF L S (CORS
€ min (67, 9]\/;’2>
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Analysis (High probability result)

Analysis is much more complicated.

. o - . fzo)—F
Markov inequality: with probability at least ¢, it holds that N < ?’?
Our complexity bound has only logarithmic dependence on 6.

Main elements of the analysis:

» Bound the function value increase of “wrong” negative curvature
steps

» Cannot have too many “wrong” steps, by Azuma-Hoeffding's
inequality

» Use the descent lemma from gradient descent to offset wrong
negative curvature steps
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Summary

Finding SOSPs using inexact gradients and Hessians
Simple short step method, no function value evaluation needed
“Flip a coin” to determine the sign of negative curvature steps

Complexity obtained for expected and high probability runtime:
comparable to deterministic algorithm with exact evaluations

Requires no coupling between ¢, and ¢ (helpful for some problems,
e.g., robust low-rank matrix sensing)

Relative gradient inexactness condition

Motivated by applications to robust low-rank matrix sensing
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